skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Greenway, E. V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A longstanding goal of evolutionary biology is to understand among-individual variation in resource allocation decisions and the timing of these decisions. Recent studies have shown that investment in elaborate and costly weapons can result in trade-offs with investment in testes. In this study, we ask the following questions: At what point plasticity in resource allocation to these different structures ceases during development, if at all? Furthermore, can individuals tailor their reproductive behavior to accompany structural changes? We experimentally addressed these questions in the insect Narnia femorata, quantifying resource reallocation across development for the first time, using a phenotypic engineering approach. To investigate whether allocation plasticity diminishes throughout ontogeny, we induced weapon loss at a range of different developmental stages and examined subsequent testes mass and reproductive behavior. We found that relative testes mass increased as weapon investment decreased, implying a direct trade-off between testes and weapon investment. However, autotomy postadulthood ceased to induce larger testes mass. Intriguingly, losing a weapon while young was associated with extended adult mating duration, potentially enabling compensation for reduced fighting ability. Our results highlight the importance of examining the ontogeny of trade-offs between reproductive traits and the flexibility of the relationship between reproductive morphology and behavior. 
    more » « less